Il Ciclo di Krebs: una delle fasi della respirazione cellulare

Schema del Ciclo di Krebs con reazioni metaboliche, composti intermedi, produzione di ATP, NADH, CO₂ e logo ScienzeMotorie.com in basso a destra
24 novembre 2018

La respirazione cellulare si divide in tre fasi principali

  1. Ossidazione di molecole organiche in Acetil-CoA
  2. Ciclo di Krebs, o dell’acido citrico
  3. Fosforilazione ossidativa

Tutte e tre avvengono nei mitocondri in cui sono trasportati tramite trasporto attivo secondario. In questo articolo ci occuperemo del ciclo di Krebs.

ciclo di krebs

Cos’è il ciclo di Krebs

Il ciclo dell’acido citrico è anche noto come ciclo di Krebs o ciclo dell’acido tricarbossilico ed è caratterizzato da 8 tappe, anch’esso non è prettamente energetico, ma prepara i trasportatori di elettroni alla fosforilazione ossidativa.

È una serie di reazioni in un circuito chiuso che sono fondamentali per la respirazione cellulare. Il ciclo dell’acido citrico produce la molecola ad alta energia ATP (adenosina trifosfato) e i sottoprodotti che formano anche l’ATP in un ulteriore processo chiamato fosforilazione ossidativa.

La regolazione del ciclo dell’acido citrico è importante in quanto le reazioni che non sono controllate porteranno a grandi quantità di energia metabolica sprecata. La capacità di regolare il ciclo mantiene la cellula in uno stato stabile e questa funzione è mantenuta da tre meccanismi:

  • La disponibilità di substrati.
  • Inibizione dei prodotti formati
  • Inibizione degli enzimi attraverso il feedback allosterico.

Regolazione dell’acetile CoA

Molecole organiche dotate di energia (carboidrati, lipidi, ma anche proteine), vengono scisse in precedenti reazioni e, prima di entrare nel ciclo di Krebs, vengono trasformate in acetilCoA, una molecola formata da un gruppo acetile (CH3CO-) e da un trasportatore di acili, detto coenzima A.

Nella prima fase del ciclo di Krebs, l’acetil-CoA viene legato ad un composto a 4 atomi di carbonio, l’ossalacetato, che quindi forma un composto a 6 atomi di carbonio, il citrato (da cui il nome alternativo del ciclo). Quest’ultimo viene avviato poi in una serie di reazioni che consentono la sintesi di 3 molecole di NADH, 2 molecole di FADH2 ed una molecola di ATP, derivante dalla defosforilazione del GTP. Per ossidare una molecola di glucosio sono necessari quindi 2 giri del ciclo di Krebs.

Il flusso del metabolita è inibito allostericamente, dove un enzima è regolato legando una molecola effettrice ad un sito non attivo. La reazione del complesso piruvato deidrogenasi è inibita allostericamente quando vi sono alti rapporti di ATP in ADP, NADH in NAD + e acetil-CoA in CoA. L’attivazione allosterica si verifica quando i volumi del rapporto diminuiscono.

Regolazione degli enzimi nel ciclo dell’acido citrico

Tre reazioni del ciclo sono catalizzate rispettivamente dagli enzimi:

  1. Citrato sintasi.
  2. Isocitrato deidrogenasi.
  3. α-chetoglutarato deidrogenasi

Prima fase

La citrato sintasi è responsabile della velocità di reazione nella prima fase del ciclo quando l’acetil-CoA è combinato con acido ossalacetico per formare citrato. È inibito da alte concentrazioni di ATP, acetil-CoA e NADH che indicano un già alto livello di approvvigionamento energetico. La molecola prodotta nella reazione, il citrato, può anche agire da inibitore della reazione.

Poiché la citrato sintasi è inibita dal prodotto finale del ciclo dell’acido citrico come ATP, l’ADP (adenosina difosfato) agisce come attivatore allosterico dell’enzima quando l’ATP è formato da ADP. Pertanto, la velocità del ciclo si riduce quando la cella ha un alto livello di ATP.

Seconda fase

Nella seconda fase il citrato viene isomerizzato ad isocitrato per poi essere decarbossilato ad a-chetoglutarato (a-KTG). Avviene prima una deidratazione seguita da una idratazione. La reazione viene catalizzata dall’enzima aconitasi, enzima complesso contenente ferro e zolfo nel centro attivo.

Il citrato viene convertito in isocitrato attraverso la formazione dell’intermedio cis-aconitato. L’enzima citrato sintasi viene inibito allostericamente dall’ATP.

Terza fase

L’enzima isocitrato deidrogenasi è un catalizzatore importante nella terza fase della reazione. Regola la velocità alla quale l’isocitrato isomero citrato perde un carbonio per formare la molecola a cinque carbonio α-chetoglutarato. Il coenzima NADH è un prodotto della reazione e, a livelli elevati, agisce come un inibitore spostando direttamente le molecole NAD + da cui è formato.

Quarta fase

L’enzima α-chetoglutarato deidrogenasi è un altro importante catalizzatore nella quarta fase del ciclo in cui anche l’α-chetoglutarato perde un carbonio e si combina con il coenzima A per formare succinil CoA. I due prodotti della reazione, succinil CoA e NADH, funzionano entrambi come inibitori a grandi concentrazioni.

Quinta fase

La quinta fase è catalizzata dalla succinil-CoA sintetasi ed è molto importante perché è l’unica tappa in cui viene prodotto un nucleotide diverso dall’ATP. Tale enzima separa il CoA dal succinil-CoA sotituendolo con un fosfato libero. Verrà quindi rilasciato il succinato e il gruppo fosfato legherà un GDP per formare una molecola di GTP.

Sesta fase

Nella sesta fase il succinato viene ossidato nei carboni 2 e 3 formando un doppio legame tra i due con la formazione di un FADH2. L’enzima è la succinato deidrogenasi e la molecola formata è il fumarato.

Settima fase

Nella settima fase Il doppio legame viene idratato tramite la fumarasi formando L-malato. L’enzima è altamente stereospecifico e l’isomero che può formarsi è solo il “trans L”.

Ottava fase

Nell’ottava fase il gruppo ossidrilico viene ossidato dalla malato deidrogenasi formando nuovamente ossalacetato e un NADH.

Calcio come regolatore del ciclo dell’acido citrico

Il calcio è anche un importante regolatore del ciclo di Krebs; un aumento delle concentrazioni sia di ADP che di ioni di calcio (Ca 2+) sono una conseguenza dei cambiamenti nell’attività cellulare. Pertanto, il segnale che stimola la contrazione muscolare attiva anche la produzione dell’ATP che lo sostiene, attraverso il ciclo dell’acido citrico. Gli ioni calcio regolano il ciclo dell’acido citrico attivando la piruvato deidrogenasi, il primo componente della reazione complessa della piruvato deidrogenasi che forma acetil-CoA.

Gli ioni calcio attivano anche gli enzimi, l’isocitrato deidrogenasi e l’α-chetoglutarato deidrogenasi che catalizzano rispettivamente la terza e la quarta fase del ciclo. L’attivazione di questi enzimi, attraverso gli ioni di calcio, aumenta il tasso di reazioni separate all’interno del ciclo e quindi aumenta la produzione del prodotto per l’intero ciclo.

Riferimenti:

  1. Berg JM, Tymoczko JL, Stryer L. Biochemistry. 5th edition. New York: W H Freeman; 2002. Chapter 17, The Citric Acid Cycle. https://www.ncbi.nlm.nih.gov/books/NBK21163/
  2. Berg JM, Tymoczko JL, Stryer L. Biochemistry. 5th edition. New York: W H Freeman; 2002. Section 17.2, Entry to the Citric Acid Cycle and Metabolism Through It Are Controlled. https://www.ncbi.nlm.nih.gov/books/NBK22347/
  3. Wan, B. et al. 1989. Regulation of citric acid cycle by calcium, Journal of Biological Chemistry, 264, pp. 13430-13439. https://www.ncbi.nlm.nih.gov/pubmed/2503501
  4. Traaseth, N. et al. 2004. Role of calcium signaling in the activation of mitochondrial nitric oxide synthase and citric acid cycle, Biochimica et Biophysica Acta (BBA) – Bioenergetics, 1658, pp.64-71. http://www.sciencedirect.com/science/article/pii/S0005272804001343

Miglior-Libro-Ginnastica-in-Gravidanza-ATS
Scienza-in-Danza-Libro-Scienze-Motorie
Tennis-Libro-Scienze-Motorie
Giuseppe-Coratella-Libro
Nutrizione-Funzionale-Scienze-Motorie
Diagrammi didattici del sistema sensoriale umano: analizzatore neuronale, classificazione dei sensi interni ed esterni e ruoli di visione, udito, tatto e cinestesia nell’equilibrio, postura e movimento.

Articoli Correlati

Illustrazione stilizzata di un corpo umano con frecce e onde colorate che evidenziano stabilità ed equilibrio, banner educativo di scienze motorie.

Differenza fra stabilità ed equilibrio

La stabilità e l’equilibrio rappresentano due concetti fondamentali della postura e del movimento umano. Sebbene spesso vengano considerati sinonimi, si riferiscono a fenomeni diversi ma strettamente collegati. Comprendere le loro differenze è essenziale per interpretare il funzionamento del sistema posturale, le sue compensazioni e le sue eventuali alterazioni. Stabilità: Definizione e Caratteristiche Cos’è la stabilità […]

Gambe di un atleta che corre su un campo da calcio, con ginocchiera al ginocchio destro e fascia testuale “Dolore al ginocchio: i glutei come ottimo alleato”, logo Scienze Motorie visibile.

Dolore al ginocchio: come i glutei possono essere un ottimo alleato

L’importanza dei glutei Nello sport il dolore al ginocchio è la classica problematica che si riscontra durante l’attività fisica e la fisioterapia ha sempre gli stessi obiettivi di massima: terapie decontratturante, rinforzo del quadricipite ed esercizi di equilibrio. Ma c’è un dettaglio che spesso passa inosservato Un gruppo muscolare che lavora in silenzio, ma che […]

Preparatore atletico che registra manualmente dati durante una sessione di allenamento calcistico ad alta intensità con calciatori in sprint.

Monitoraggio del carico settimanale a costo zero nel calcio

Monitoraggio del carico: strumenti e benefici L’importanza del monitoraggio del carico Avere un sistema di monitoraggio che permetta di rispettare i principi di alternanza e progressività del carico, sia nel microciclo che nell’intera stagione, è fondamentale per lavorare con logica e in piena sinergia con lo staff tecnico. Strumenti di monitoraggio: tecnologici e accessibili I […]

BLSD: catena della sopravvivenza, rianimazione cardiopolmonare e utilizzo del defibrillatore DAE.

BLSD 2025: cosa cambia davvero rispetto al passato?

Le nuove linee guida della rianimazione Le novità delle linee guida 2025 sulla RCP e sul BLSD La rianimazione cardiopolmonare (RCP) è una delle competenze salvavita più importanti per cittadini e sanitari. Le linee guida internazionali 2025 (ERC – European Resuscitation Council e AHA – American Heart Association) hanno aggiornato diversi punti chiave del BLSD, […]

Atleta che corre su un campo da calcio durante una sessione di allenamento, concetto di monitoraggio del carico esterno.

Il monitoraggio del carico esterno di lavoro in un giocatore durante il Return to Play e la soggettività dell’atleta

Il monitoraggio del carico esterno di lavoro in un giocatore durante il Return to Play e la soggettività dell’atleta Importanza del monitoraggio del carico esterno nel rientro post-infortunio Nell’ultima fase di rientro post-infortunio diventa di fondamentale importanza il monitoraggio del carico esterno a cui l’atleta è sottoposto durante le sedute specifiche in campo. Quanta distanza […]

Diagramma didattico che illustra i tre tipi di contrazione muscolare: isometrica (muscolo attivo senza accorciarsi), concentrica (muscolo si accorcia vincendo la resistenza) ed eccentrica (muscolo si allunga sotto resistenza), con analogia della bilancia e illustrazioni anatomiche.

Tipi di contrazione muscolare

Guida Completa e Ottimizzata In questo articolo trovi una spiegazione chiara e coerente dei principali tipi di contrazione muscolare, organizzata con una tassonomia semplice da consultare e ottimizzata per la lettura online. L’obiettivo è aiutarti a comprendere meglio come funziona la produzione di forza nel corpo umano, evitando fraintendimenti frequenti, soprattutto riguardo ai concetti di […]

Live Chat
assistance banner image
Whatsapp
Messenger
800.19.35.40