Fisiologia Comparata: imparare dagli animali

Marmotta su terreno erboso in ambiente montano sfocato, con banda rossa “FISIOLOGIA COMPARATA” e logo di ScienzeMotorie.com in basso.
02 febbraio 2019

La fisiologia comparata

La fisiologia comparata è una branca della fisiologia

che, in parte, studia come diversi animali sopravvivono in ambienti che di solito feriscono o uccidono gli umani. Ogni volta che respiriamo, l’ossigeno entra nel flusso sanguigno per mantenere i nostri organi vivi e funzionanti. Quando l’ossigeno non può arrivare ai tessuti del nostro corpo, questi cominciano a morire.

Questo è vero per tutti gli organi, ma soprattutto per il cervello. In condizioni come ictus e arresto cardiaco, quando il cuore improvvisamente smette di funzionare, la perdita di ossigeno e di nutrienti danneggia le cellule del cervello. Spesso, anche lo scenario migliore è desolante. Le persone che sopravvivono a queste condizioni possono diventare disabili in modo permanente, rendendo difficile camminare, parlare o lavorare. Nel peggiore dei casi, le persone muoiono per un esteso danno cerebrale.

I ricercatori hanno cercato instancabilmente di creare nuove terapie e farmaci che rendano il cervello resistente ai danni causati dalla privazione dell’ossigeno. Nel processo di inventare nuovi trattamenti, gli scienziati, compresi quelli specializzati nella fisiologia comparata, stanno cercando di imparare dagli animali che hanno già un cervello in grado di sopravvivere senza ossigeno.

Cammello dal manto scuro seduto sulla sabbia del deserto con un orecchino giallo sull’orecchio, dune ondulate e cielo chiaro sullo sfondo.

 


Argomenti trattati dalla fisiologia comparata

Tra gli argomenti trattati da questa disciplina si distinguono, non in ordine di importanza:

  • Lo studio della digestione e dell’assorbimento;

  • Gli Erbivori ruminanti e non ruminanti;

  • I Carnivori;

  • La Coprofagia;

  • La Digestione di cere, chitina e cellulosa;

  • Sintesi e digestione del latte;

  • Latte del gozzo e secrezioni grasse degli uccelli;

  • Farine animali, encefalite spongiforme bovina e altre malattie da prioni;

  • Respirazione in ambiente terrestre e acquatico;

  • Pesci polmonati. Respirazione, fonazione e canto negli uccelli;

  • Respirazione nelle uova;

  • Gusto e olfatto;

  • L’organo vomero-nasale;

  • Ecoricognizione in cetacei e pipistrelli;

  • Percezione delle radiazioni infrarosse;

  • Sensibilita’ elettromagnetica e orientamento in pesci e uccelli;

  • Adattamenti fisiologici alle temperature estreme: studi su cammelli, cetacei, uccelli e pesci artici;

  • Veleni dei vertebrati e loro effetti.


Strategie di sopravvivenza in ambienti a basso ossigeno

Guardando alla natura, ci sono molti animali che possono sopravvivere con poco o nessun ossigeno per lunghi periodi di tempo. Gli esempi includono i ratti talpa che trascorrono la loro vita in tane con ossigeno molto basso e tartarughe che vanno in letargo durante l’inverno in stagni coperti da una lastra di ghiaccio.

Altri animali, come la foca incappucciata, non vivono in ambienti a basso tenore di ossigeno a tempo pieno, ma potrebbero dover sopravvivere temporaneamente alla perdita di ossigeno mentre cercano cibo. Questi sigilli possono immergersi sott’acqua per un massimo di un’ora senza una sola boccata d’aria mentre cacciano per la loro cena.

Queste incredibili imprese potrebbero farci chiedere come gli animali siano in grado di sopravvivere senza un elemento essenziale per mantenere in vita il cervello umano. Finora, i ricercatori hanno scoperto una serie di strategie che gli animali usano per proteggere il cervello in ambienti a basso ossigeno. Alcuni di questi includono la chiusura delle connessioni tra le cellule nervose per proteggere il cervello e cambiare il tipo di “combustibile” che il cervello utilizza per produrre energia per ridurre al minimo il danno cerebrale.

Gli animali possono usare una o una combinazione di queste diverse strategie a seconda della loro particolare situazione.


Conclusioni

Il loro comportamento ci dice che la natura ha già trovato soluzioni per malattie che danneggiano il cervello umano. Osservare le abitudini degli animali offre ai fisiologi nuove prospettive su come possiamo risolvere i problemi che minacciano la nostra salute e le nostre vite.

Miglior-Libro-Ginnastica-in-Gravidanza-ATS
Scienza-in-Danza-Libro-Scienze-Motorie
Tennis-Libro-Scienze-Motorie
Giuseppe-Coratella-Libro
Nutrizione-Funzionale-Scienze-Motorie
ads 08-09-10 maggio

Articoli Correlati

Bambino impegnato nel gioco simbolico durante lo sviluppo del sé

Gioco simbolico e sviluppo del sé nel bambino

George H. Mead (2010) analizza il gioco come una delle principali condizioni sociali all’interno delle quali emerge e si struttura il sé. In particolare, l’autore attribuisce un ruolo centrale al gioco simbolico e ai processi di assunzione di ruolo, attraverso i quali il bambino ha la possibilità di confrontarsi con gli altri, riconoscendo somiglianze e […]

Tennista professionista in fase di spostamento laterale durante un test di resistenza specifica sul campo.

Sigma Test: la valutazione della resistenza specifica nel tennis

Nel panorama della preparazione atletica moderna, la valutazione del tennista ha superato la distinzione netta tra capacità condizionali e capacità cognitive. Il Sigma Test, ideato da Buzzelli, rappresenta l’evoluzione scientifica nella valutazione dell’atleta. Questo protocollo non si limita a misurare la capacità aerobica, ma indaga la resistenza specifica del tennista, integrando metabolismo e funzioni cognitive. […]

Atleta che tiene il ginocchio infortunato con overlay a raggi X che mostra la rotula e l’articolazione del ginocchio.

Il costo biomeccanico dello shock tattico

Nel calcio professionistico, la frenesia di ottenere risultati immediati spinge spesso i club a compiere la scelta più drastica: cambiare allenatore. È una decisione strategica che mira a generare uno stimolo acuto sulla prestazione collettiva, ma che comporta inevitabili conseguenze fisiologiche e biomeccaniche sugli atleti. La letteratura scientifica suggerisce infatti che, nelle settimane successive a […]

Fattori Determinanti della Forza Muscolare

Fattori Determinanti della Forza Muscolare

La forza muscolare non dipende solo dalla grandezza dei muscoli, ma dalla capacità di produrre e trasmettere efficacemente la forza durante ogni gesto motorio. Senza un’adeguata trasmissione, anche una forza elevata non si tradurrebbe in un movimento efficace. Per questo motivo è fondamentale comprendere i principali fattori che regolano l’espressione della forza, in particolare quelli […]

L’Algoritmo della Postura: Tra Cibernetica e Caos Deterministico

L’Algoritmo della Postura: Tra Cibernetica e Caos Deterministico

Definizione e Ontologia del Sistema: Oltre il Modello Meccanicistico Il Sistema Tonico Posturale Fine (STPf) non è una semplice struttura anatomica, ma un processo computazionale vivente. Esso si configura come un sistema cibernetico (Wiener, 1947) di secondo ordine (Von Foerster, 1981): un’entità che non solo elabora dati esterni, ma include l’autosservazione e il vissuto neurofisiologico […]

Diagramma anatomico dei muscoli facciali e del collo con evidenza della correlazione tra mandibola e colonna cervicale.

Sistema Stomatognatico
e Postura: Interazioni e compensi sistemici

Il Sistema Stomatognatico: La Centrale Recettoriale che Destabilizza la Postura Il sistema stomatognatico non è una semplice unità meccanica dedita alla masticazione. È un complesso apparato sensoriale composto da ossa mascellari, arcate dentarie, articolazione temporo-mandibolare (ATM) e muscoli masticatori. Sebbene non regoli direttamente il Sistema Posturale Fine, possiede un’enorme capacità di perturbazione, agendo come un […]

Live Chat
assistance banner image
Whatsapp
Messenger
800.19.35.40