Prestazioni di Resistenza e i suoi Indicatori

Prestazioni di Resistenza e i suoi Indicatori
12 giugno 2018

Come si diventa un atleta di resistenza d’élite? E ci sono alcuni indicatori predittivi che possono aiutare a determinare questo?

L’allenamento di resistenza viene utilizzato per migliorare la capacità di sostenere una determinata quantità di potenza o forza per lunghi periodi di tempo, mentre le parti dell’allenamento per la forza servono a migliorare la capacità di superare una forza esterna producendo la propria (più grande) forza.

Conosciamo tutti il termine “motore aerobico” e non dobbiamo dimenticarlo. Ma perché è così importante ricordarlo? Beh, per essere tecnico, è perché qualsiasi evento di attività fisica che dura più di 2 minuti ha un aspetto di resistenza e più a lungo supera i 2 minuti, più è importante la tua resistenza aerobica (motore), specialmente per la prestazione.

Ad esempio, la maggior parte degli eventi di canottaggio può durare all’incirca 6 minuti, e i concorrenti dedicheranno la maggior parte del loro tempo all’allenamento utilizzando un lavoro aerobico facile con una quantità relativamente piccola del loro tempo di allenamento focalizzato sul lavoro ad alta intensità. Ovviamente, c’è un aspetto anaerobico ma generalmente è fatto in quantità relativamente piccole per migliorare le prestazioni di un atleta prima del loro evento. L’allenamento principale è basato sull’aerobico. E naturalmente, poiché la durata dell’evento dura più a lungo, tanto maggiore sarà il contributo del tuo motore aerobico (metabolismo).

Ora che comprendiamo il motore aerobico, esaminiamo alcuni componenti che potrebbero migliorare il tuo motore.

Che cos’è il massimo consumo di Ossigeno

IL VO2 max è il massimo volume di ossigeno che può essere utilizzato in un minuto durante un esercizio massimale o esaustivo, ovvero la massima quantità di ossigeno che un individuo può utilizzare durante un esercizio fisico molto intenso, massimale. Si misura in millilitri di ossigeno al minuto per kilogrammo di peso. Serve per valutare la massima potenza aerobica.
E’ considerato il miglior indicatore della fitness cardiovascolare (CRF) o resistenza aerobica.
Gli atleti che svolgono sport di resistenza hanno elevati valori di VO2 max.
Sebbene in gran parte il consumo di ossigeno sia legato a fattori genetici, all’età e al sesso, l’allenamento aerobico mirato può essere in grado di incrementare il massimo consumo di Ossigeno fino al 20%, soprattutto in atleti amatoriali.

VO2 max può essere utilizzato come la rappresentazione di quanto ossigeno il tuo corpo utilizza durante l’esercizio fisico al massimo sforzo.

Questa formula può essere utilizzata per determinare le funzioni di entrambi i fattori centrali (sangue, polmone, cuore) e periferici (muscoli scheletrici).In altre parole, quanto ossigeno può pompare il tuo cuore e quanta parte di quell’ossigeno può usare i tuoi muscoli scheletrici.

Che ci crediate o meno, questo era il gold standard per la previsione delle prestazioni di resistenza, ma i tempi sono cambiati e così anche i nostri schemi di pensiero. Per dirla in prospettiva, si riteneva che se avessi un VO2 max più alto di un altro atleta, questo ti avrebbe già reso un atleta di “resistenza” migliore.

A mio parere, è richiesto un VO2 max elevato per prestazioni di durata ottimali, tuttavia non è necessario il VO2 più alto per essere il miglior atleta di endurance, ma bisogna dire che è anche improbabile che tu possa essere un atleta di resistenza d’elite con un VO2 basso max.

VO2 max può anche essere espresso in vari modi.

Il VO2 può a volte essere calcolato in termini assoluti, che è la quantità di ossigeno che il corpo può utilizzare. Pertanto, un atleta può ritrovarsi con un valore per VO2 max di 5,8 litri di ossigeno al minuto (5,8 L di O2 / min).

Il modo migliore, a mio parere, per esprimere VO2, è in termini di peso corporeo. Sarete in grado di vedere valori lungo le linee di 53 millilitri di ossigeno per chilogrammo di peso corporeo al minuto o 53 ml di O2 / kg / min. Dividere per peso corporeo consente di ridimensionare il valore assoluto del peso dell’atleta che può essere utilizzato per confrontare i valori di VO2 degli atleti relativamente al loro peso corporeo.

Dal VO2 max, gli esperti di allenamento e gli allenatori hanno poi visto che la percentuale di VO2 max che un atleta poteva mantenere, specialmente se potesse essere mantenuta per un periodo prolungato, era un miglior predittore delle prestazioni di resistenza.

Esempio 1:

Per dirla in prospettiva, prendiamo 2 atleti che hanno lo stesso VO2 max di 65ml o2 / kg / min. Uno degli atleti può sostenere quel livello al 65% per 1 ora e l’altro atleta può mantenere quel livello al 78% per quell’evento di 1 ora. Logicamente, questa misura che un atleta poteva sostenere per lunghi periodi era un predittore di prestazioni molto “migliore” di VO2 max.

Esempio 2:

Un altro esempio di come potrebbe funzionare potrebbe essere: Ancora una volta, 2 atleti saranno confrontati, uno degli atleti ha un VO2 max di 75 ml 02 / kg / min ma può sostenere quel livello al 65% e l’altro atleta ha un VO2 massimo di 60 ml di O2 / kg / min ma può sostenere tale livello al 90%, il che significherebbe che l’atleta con il valore VO2 massimo più basso è prevedibile che possa fare meglio dell’atleta con il VO2 massimo più alto a causa della capacità di sostenere il loro livello di VO2 max per una percentuale più elevata.

Per spiegare questo, possiamo prendere 75 ml di O2 / kg / min x 0,65 = 48,75 ml / kg / min per l’atleta uno. 60ml O2 / kg / min x 0,90 = 54 ml / kg / min per l’atleta due. Questo tipo di calcolo può essere indicato come soglia di VO2. Esistono vari metodi per addestrare la soglia, come l’OBLA (comparsa di lattato nel sangue), la soglia anaerobica, la soglia del lattato, la soglia ventilatoria, ecc. Rispettano tutti lo stesso concetto, che è l’aspetto più importante di questi metodi, ma hanno diverse definizioni di ciò a cui risultano.

Un altro “predittore” di prestazioni potrebbe venire dalla biomeccanica e dall’efficienza dell’atleta.

Ciò che intendo per efficienza è quanto bene (o meno bene) il tuo corpo converte l’energia (dalla rottura di carboidrati e grassi, di solito) in un lavoro utilizzabile (ad esempio produzione di energia, forza). Maggiore efficienza proviene dall’energia che viene utilizzata, più esso sta andando sul lavoro meccanico. Maggiore è l’efficienza, maggiore è la capacità dell’atleta di generare una forza maggiore in uscita per meno energia espulsa / utilizzata. Nelle prestazioni, questo potrebbe comportare sensazioni di stanchezza in gara solo in uno momento avanzato. L‘efficienza è variabile tra ogni atleta e questo dipende dalle fibre muscolari a contrazione lenta e veloce ma anche da fattori come l’angiogenesi può essere importante, così come la genetica di un individuo.

Conclusioni

Questi erano solo alcuni dei meccanismi fisiologici che potevano essere utilizzati per “prevedere” le prestazioni di resistenza. Tuttavia, si noti che le prestazioni di resistenza non sono limitate ai meccanismi sopra indicati. Ci sono così tanti altri aspetti che potremmo approfondire come

  • motivazione,
  • equipaggiamento,
  • strutture,
  • l’ambiente in cui ti trovi (es. Compagni di squadra, tattiche) e
  • la genetica

che giocano tutti un ruolo importante nel risultato di chi essere un grande atleta di resistenza.

Miglior-Libro-Ginnastica-in-Gravidanza-ATS
Scienza-in-Danza-Libro-Scienze-Motorie
Tennis-Libro-Scienze-Motorie
Giuseppe-Coratella-Libro
Nutrizione-Funzionale-Scienze-Motorie
Cadaver-Lab-Scienze-Motorie-2025
BFRT-Blood-Flow-restriction-Training-Italia

Articoli Correlati

Donna anziana che esegue esercizi con pesi per l'attività fisica nei soggetti affetti da morbo di Parkinson, con luce naturale che entra dalla finestra. nella parte bassa dell'immagine si nota il logo di ScienzeMotorie.com

Attività fisica adattata nei soggetti parkinsoniani

Il morbo di Parkinson Il morbo di Parkinson è una malattia neurodegenerativa che provoca disfunzioni motorie e cognitive. Tale patologia è il risultato di un danno alla via nigrostriatale dopaminergico del mesencefalo, che si traduce in una riduzione del neurotrasmettitore di dopamina. Ciò comporta per il soggetto sintomi quali: bradicinesia, rigidità, tremore a riposo, instabilità […]

Sequenza di scheletri in movimento che illustra un’analisi biomeccanica del camminare e correre, con il testo "Analisi biomeccanica del movimento" e il logo di Scienze Motorie a destra.

Analisi biomeccanica del movimento attraverso i grafici angolo-angolo

Analisi Biomeccanica La biomeccanica è la disciplina che studia il movimento umano, descrivendolo in termini sia qualitativi che quantitativi. Nelle analisi biomeccaniche e più in genere nella misurazione del movimento umano si è soliti trasporre in forma grafica e in funzione del tempo alcune variabili. Come ad esempio la distanza, gli angoli etc (Enoka, 2008). […]

Illustrazione anatomica del cervello umano con il cervelletto evidenziato in arancione e il resto della struttura cerebrale in blu. In basso, la scritta "Il ruolo del cervelletto" con il logo Scienze Motorie.

Il ruolo del cervelletto nel gesto atletico

Ruolo fondamentale nell’esecuzione e miglioramento del gesto tecnico di un atleta è svolto dal cervelletto. È posto nella fossa cranica posteriore, ha una forma ellissoidale appiattita dall’alto in basso. Sono ben distinguibili una parte centrale, detta verme, e due laterali, chiamate emisferi cerebellari. Lo completano due piccole formazioni denominate flocculi. Il cervelletto Il cervelletto è […]

Rappresentazione stilizzata di fibre muscolari con striature orizzontali e fascia rossa con testo "Test per la Composizione Muscolare" in basso a destra è ben visibile anche il logo di ScienzeMotorie.com

Test per la composizione muscolare

Il tessuto muscolare scheletrico è costituito per la maggior parte da fibre muscolari lente (slow-twitch muscle fibers) e fibre muscolari rapide (fast twitch muscle fibers). La percentuale relativa di ciascuna sottopopolazione di fibre è per lo più determinata dal codice genetico di un atleta, o genotipo, mentre l’espressione delle proprietà metaboliche di un muscolo e […]

Due persone sedute, una con gambe gonfie affette da lipedema o linfedema, mentre l’altra applica un trattamento manuale. in basso a destra si può notare il logo di ScienzeMotorie.com

Lipedema e linfedema

Il lipedema è una malattia progressiva in cui si riscontra accumulo spropositato di grasso sottocutaneo nella regione sotto ombelicale, a partire quindi dalla regione glutea e soprattutto sulle gambe ad eccezione dei piedi che conduce quasi sempre a problemi di deambulazione man mano che la malattia diventa cronica. Spesso ma non sempre colpisce anche la […]

Confronto visivo tra un fegato sano e un fegato affetto da steatosi epatica, con dettagli cellulari e accumuli di grasso evidenziati. In basso a destra è presente il logo di ScienzeMotorie.com

Steatosi epatica

La steatosi epatica, patologia detta anche ‘fegato grasso ‘ è la condizione che si verifica quando la percentuale di grasso nel fegato supera il 5% senza la presenza di altre patologie di danno epatico. La malattia è caratterizzata da infiltrazione di grasso nel fegato, principalmente sotto forma di trigliceridi, che viene accumulato all’interno delle cellule […]

Live Chat
assistance banner image
Whatsapp
Messenger
800.19.35.40